
International Journal of Computer Trends and Technology Volume 69 Issue 8, 20-22, August 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I8P105 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Designing for Latencies
Anoop Koloth

Founder, Dotted yellow, San Jose, United States of America.

Received Date: 10 July 2021

Revised Date: 13 August 2021

Accepted Date: 26 August 2021

Abstract - When an organization spends CAC (Cost of

Acquisition) to acquire a potential customer through

various channels, all it takes is the LTV (Life Time Value)

of the customer to decide the future of the upcoming

company and its growth initiatives.

Ideally, we would expect the LTV > CAC for the business

to thrive and grow or acquire a more extensive user base

for future anticipated growth.

However, when the customers have unlimited choices

at their fingertips to choose from, it becomes imperative to

design the product for a better user experience and latency

compared to the competitor.

The paper looks at various design approaches to

latency and how the technology landscape is changing

around latencies.

Keywords - Latencies, Caching, Optimization, Web,

Mobile, Edge Computing, User perception.

I. INTRODUCTION

Latency, in simpler words, is the time taken for data

transfer from source to destination measured typically in

milliseconds. And here, we are referring latencies across

three central user platforms: websites, mobile websites,

and Native Mobile applications. To begin with, let’s

understand what introduces latencies into the system. The

current technology stack in the industry is multi-tiered

with the predominant pattern as below

Client – CDN – Gateways – Compute – Data Stores

And any functionality to be addressed for the end user

would mean a hop in the bidirectional to get client requests,

process the function, associate the data, and give back

response to stitch the end-user experiences. That meant

that requests and responses exhibit packets' lifecycle

traversing across the internet or network with multiple

hops, thereby introducing delays or latencies.

During the advent of the Web, the initial static Html

or assets, a single network request would suffice the end-

user pageview or experience. Which would primarily be

impacted by how much time the client is spending on the

domain name resolution, secure service layer computation,

actual packets transfer of data from source to destination.

The primary governing criteria would be the route taken

over the internet and the proximity of the data center, all

attributed to the request and response time and network

latencies.

However, with the dynamic content powered by

JavaScript on the Web and inquisitive styling by the

cascaded style sheet, latencies are no longer governed by

just one request-response, or several hops or number of

requests made. It has become a conglomerate of various

factors.

Primarily the below four factors are the ones that have

a higher impact on latency for any software system on the

internet. And pretty much any component exhibits a fractal

pattern on the below four parameters into consideration

during the bottleneck phase.

• Time to Response(ttr)

The time taken to accommodate a network request or

a response to compute.

• Multiplex Request Calls(mi)

The different requests required to accommodate an

experience and their parallelism with each other.

In the above diagram the value for mi is 4. Typically,

its averaged across batch of parallel network calls or

system requests over the time window.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anoop Koloth / IJCTT, 69(8), 20-22, 2021

21

• Delay to Start(td)

The delay to start a subsequent critical request or

computation in relation to completion of previous request.

• Prioritization (Po)

The order of execution of network request or the

computation.

Po = (Pi *ttrx)/N

N = Total number of requests

ttrx = Time to response for specific request

• Bottleneck(B)

The factors impending delays at different layers in

OSI [1] model. Typically, bottleneck is categorized as

Bx = (min(P0), min(td), min(ttr), max(mi))

The goal is to reduce the Bx at each iteration and tier

to arrive at the optimal latency experience.

II. DESIGN

Designing an efficient latency system aims at

minimizing Bx at each component or tier, or layer.

However, to survive and thrive against competitive user

experiences, the industry has resorted to primarily two

techniques “Trick” or “Treat” or a “Hybrid” of both. In the

“Trick” scenario, the aim is to the illusion that the page or

experience is fast, or delay goes unnoticed. The Treat side

of affairs, it focuses mainly on minimizing the Bx. Another

design pattern into consideration is optimizing latency

w.r.t to Space, Time, and State.

Let us take a deeper look into the individual

experiences and see how the design is leveraged.

III. WEBSITES

Most of the internet was Web-based for more than a

decade before the advent of mobile devices and the

internet of things. Basic HTML-driven pages powered the

experiences, then came the dynamic ones powered by

JavaScript and styled by cascading style sheets. As the

aspiration for better-looking web pages and experiences to

attract customers and beat competitors kept growing, so

did the static assets and associated new style sheets and

JavaScript libraries powering the gigantic Content Driven

networks. The game changed for CDN when images and

videos became a predominant asset category with the

advent of social media and networking.

It all started with server-driven architecture with

Client thin design, eventually phasing out through server

and thick client design. We are now endeavouring to a

multi-tiered or multi geographies and region-driven

architecture with data split across different tiers to power

the consolidated experiences to the end-user.

Also, the industry has resorted to another conglomerate

approach to the problem stitching experiences across

different touchpoints or platforms. Over time, what hasn't

changed is the end-user perception to get things quickly

and most intuitively.

A. Trick

Let us go over a few of the industry-wide tricks to

beat delays in user perception.

a) Changing the Wait experiences

Here, the basic methodology is to hide the backend

delays to the end-user by either displaying a silhouette

with blended background colours or giving an informative

animation that engages the end-user to delay the

realization phase eventually.

This method buys time from the user in the

background to address all the underlying issues like server-

side latencies, DNS times, assets load times, critical

resource failures, bandwidth constraints, etc. This

technique should refrain as this still doesn’t solve the root

cause of higher Bx. But this is a win-win solution when the

latencies degradation is due to network issues or external

third-party failures beyond the scope of optimization.

b) Above the Fold and Below the Fold

In any website, the experience available to the end-

user before the scroll is above the fold. For faster

experience, the methodology prioritizes the above-the-fold

data and assets over the below-the-fold resources and data

modules.

The delays incurred in loading resources are shifted to

below the fold experience and buried underneath the time

taken by the user to act on-page.

Anoop Koloth / IJCTT, 69(8), 20-22, 2021

22

c) Predictive Loading & Prefetching

With many resources heavy on media files and images

taking over a more significant portion of newer websites

traffic, the traditional approach relying on the round trip

time optimization in a transaction resulted in delayed and

buffered experiences. Prominent industry players have

either resorted to Edge or Predictive or pre-fetching

techniques to have the data available in the proximity of

the end-user devices to provide a seamless latency

experience. Powered by machine learning and user data

analytics, the effectiveness of the data made available has

improved recently. However, this approach fails to address

the long tail or new user scenarios.

d) State Management on the Browser

Browsers today power the HTTP2 and Server push

technologies. The advent of stacks like React, which can

trigger events on the DOM tree based on state changes,

allows async data availability at the browser. Also, this

gives better control to the Web Developer to manage state,

thereby leveraging heavy ended resource utilization

asynchronously and give seamless end-user experience

without incurring delays.

B. Treat

The rule of thumb has not changed a lot at the client

layer, which is modern-day Browsers for Websites. All it

matters is the optimized Critical Rendering Path [2] and

faster access to data.

Current-day browser experiences powered by multiple

javascript, images, style sheets, and an optimized critical

rendering path would infer no bottlenecks or delays in

completing the Document Object Model.

Once the primary data is available for the HTML parsing,

any invocation to the javascript would block the parser

until the availability of javascript. Similarly, the style

sheets act as the primary render blocker. Optimization

aims to speed up the HTML parsing for base templating

and allow the available data to render by style. Once the ttr

is minimized for the primary call, which could include a

series of methodologies like caching, DNS prefetch,

tls pre-termination, prefetching, or server push. The vital

design consideration is minifying, modularizing,

reprioritization, and reducing IO inlining, easing the

browser rendering path.

IV. MOBILE WEBSITES

Mobile websites started minimalistic on the mobile

devices but have been gaining traffic attributed to

organizations moving to a single application model with

the complexities of maintaining two native stacks. Also,

the technology stack has advanced to support many native

capabilities on the web. Mobile Web for the major industry

players has been primarily vital in the deep linking

campaign to new users to mobile app downloads.

Regarding rendering optimization, the same as websites

are applicable; however, due to the responsive design

pattern and different devices specs, the goals are primarily

to focus on the battery usage, CPU cycles, memory

consumption and have minimalistic to the assets leveraged.

V. NATIVE MOBILE APPLICATIONS

Leading the internet traffic user experiences are the

native mobile application with the heterogeneous spectrum

of experiences ranging from gaming, virtual reality,

augmented reality, social networking. Today, mobile

applications are the most data-sensitive application on the

planet, just behind the internet of things. Unlike the

Websites, the critical rendering path is insignificant, as the

assets required for rendering are part of the binary. The

display experience on the native mobile OS stack is

optimized.

However, the case may not be the same for mobile

applications that cannot bundle the assets in the

constrained binary size limit enforced by the platform

provider. Mobile applications primarily depend on network

performance [3] and client-side serialization and

deserialization techniques implemented. The design goal is

employed mainly to minimize.

VI. EDGE COMPUTING

Edge computing is primarily computing offloading at

edge server closers to user proximity compared to

everything on the cloud or the data center. The compute

offloading, or local computing, has been around on the

client devices; however, the capabilities were limited.

When client devices or browsers have moved on to

accommodate more these days on local computing with the

advancement of technologies like server push and state

management on the client.

Edge computing powered by the recent trend in

software-defined networks and software load balancers is

beneficial for controlling the data. The major challenge for

latency at the edge is the balance between data availability

and latency improvement. The design consideration is the

proximity of edge nodes, time to live for the data, tls

termination, handling pre-flight browser calls, optimizing

the cache purge strategies. Given the lower Capex of edge

infrastructure and network optimizations like anycast

systems, the data localization on edge nodes based on

session affinity also does the trick to improvise data

availability and latencies.

VII. CONCLUSION

Performance and user perception have become an

essential aspect impacted by latencies typically considered

after the product development or production deployment.

Early in the product lifecycle, the latency design approach

is vital for any uplift and eliminates terrible user

experiences, as anyone who had one will not always report.

REFERENCES
[1] ISO: Information Technology—Open Systems Interconnection—

Basic Reference Model: The Basic Model. Geneva, Standard

ISO/IEC 7498-1(E) (1994). [Online]. Available:

https://www.iso.org/standard/20269.html

[2] W3C Recommendation: Navigation Timing. [Online].

Available: https://www.w3.org/TR/navigation-timing/

[3] A. Koloth, “Native App Network Performance” Dzone., Apr. 2021.

https://www.w3.org/TR/navigation-timing/

